A facile preparation of novel multifunctional vectors by non-covalent bonds for co-delivery of doxorubicin and gene.
نویسندگان
چکیده
In this study, novel multifunctional ternary complexes of biotinylated transferrin-avidin-biotin-poly(ethylene glycol)-poly(L-glutamate acid)/poly(2-(2-aminoethylamino) ethyl methacrylate)/doxorubicin-poly(L-aspartic acid)/pDNA (TAB/PIC-D/pDNA complexes) were prepared based on polyion complex micelles (PIC) and the avidin-biotin system, which aimed to target co-delivery of anti-cancer doxorubicin and gene. Cytotoxicity studies revealed that PIC-D could have anti-tumor effect on HeLa cells and HepG2 cells; TAB coating could increase the biocompatibility of PIC-D/pDNA complexes and the targeting delivery efficiency of doxorubicin. TAB/PIC-D/pDNA complexes possessed higher transfection efficiency than the unmodified complexes in serum, and transferrin could enhance luciferase expression in HeLa cells and HepG2 cells. Furthermore, confocal laser scanning microscopy showed that doxorubicin and gene could be delivered into HepG2 cells simultaneously by TAB/PIC-D/pDNA complexes. The formation of the ternary complexes provides a facile approach to constructing a multifunctional delivery system for targeted co-delivery of anticancer drugs and gene.
منابع مشابه
Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کاملPreparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کامل(SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
Abstract The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification me...
متن کاملThe effect of polylactic acid support in stability and electrical field of heterocyclic coupled hexa peptide nano systems: A novel strateu to drug delivery
Biological materials. recently. are the building blocks of several self-assembling peptide and protein systems.The main challenge In molecular self-assembly is to design molecular building blocks that can undergospontaneous organization. These cyche peptides were produced by an alternating fl'ell number of D- and Laminoacids.which interact through non-covalent interactions co an array of selfas...
متن کاملDesign and bioinformatics analysis of novel biomimetic peptides as nanocarriers for gene transfer
Objective(s): The introduction of nucleic acids into cells for therapeutic objectives is significantly hindered by the size and charge of these molecules and therefore requires efficient vectors that assist cellular uptake. For several years great efforts have been devoted to the study of development of recombinant vectors based on biological domains with potential applications in gene therapy....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2012